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ABSTRACT: By generalizing the concept of extinction cross-
section to complex valued extinction cross-section we analyze
the coupling between plasmon modes in metallic dimers or
quadrumers. Identifying the phase information in the field
scattered by subsets of the whole plasmonic system allows to
infer the formation of subradiant or super-radiant hybrid
modes. We also propose a phenomenological modeling based
on the use of coupled mode equations to deduce from rigorous
calculations a quantitative estimate of mutual coupling
coefficients when only two modes interfere. These coefficients
determine the spectral position of hybrid modes. This approach is applied to two interacting silver spheres; the parameters of the
energetic diagram are calculated as a function of the gap between spheres. In the case of two identical spheres illuminated with a
linearly polarized light parallel or perpendicular to the dimer, only one hybrid mode is excited. The phenomenological modeling
is then applied to a four-particle system, where the interaction between the initial dipolar modes gives rise to Fano resonances. In
a weak coupling regime of the system, the asymmetric line profile in the extinction spectra of the system emerges from the
superposition of a broad super-radiant mode and a sharp subradiant mode. A strong coupling regime is characterized by a
broadened subradiant mode and a larger Fano resonance. The sharpness of the Fano resonance in the weak coupling regime
makes this structure well suited for sensing applications.
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Metal nanoparticles (NPs) have been attracting an
increasing attention for few decades, particularly due

to their unique optical properties. Localized surface plasmon
resonances (LSPRs) occurring on such NPs under an
electromagnetic excitation result from a coupling between the
incident wave and the surface charge density oscillations of
particles.1 The resonant behavior of a single metal particle
depends on many physical and geometrical parameters. The
nature of the metal affects the spectral range of resonances.
Noble metal particles and, particularly, silver and gold are well-
known to resonate in the visible range, making such materials
particularly well suited for practical applications.2 The particle
size and shape, as well as the optical properties of the
surrounding medium, also influence the spectral response of
nanoparticles. The number of excited resonant modes, their
nature, and their spectral location mainly depend on the
particle geometry,3,4 whereas the host medium refractive index
shifts the resonance wavelength.5,6 Each resonant mode
corresponds to a discrete coupling state between the incident
radiation and a surface charge oscillation mode and appears in
the particle spectral response as a resonance band with a center
wavelength and a finite full width at half-maximum (fwhm).
Excitation of a given mode leads to an enhancement in the
radiative (scattering) and nonradiative (absorption) response of

the particle, providing large intensities in the close proximity of
particles7 with a mode dependent spatial distribution. The
spectral behavior of LSPRs together with their sensitivity to the
ambient medium and the possibility to confine light at the
nanoscale make metal NPs powerful in a broad range of
applications, including biological and chemical sensing,8

surface-enhanced Raman spectroscopy,9 nanophotonics,10 or
improved photovoltaic devices.11

Among all properties of LSPRs, the coupling between two or
more particles offers a promising way to design specific optical
responses. In the simple case of two close particles in strong
interaction, the dimer response results from a coupling between
the different modes of individual particles and is characterized
by spectral shifts from individual resonances and generally by a
larger field enhancement between the particles. The dimer
resonance modes then differ from the individual particle ones
according to the nature of the coupling and its strength. A
physical description of interactions in plasmonic resonant
systems is provided by the hybridization theory.12 In the
general case, this approach considers the modes of a system of
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particles as hybrid modes resulting from bounding and
antibounding combinations of the individual particle modes,13

as we generally deduce the molecular orbitals from the atomic
orbitals.14 Under certain configurations, plasmonic particle
systems can have Fano-like resonances in their optical
response,15,16 that is, resonances with an asymmetric line
shape that differs from the Lorentzian profile generally used to
describe the LSPRs. Fano resonances result from interactions
between a discrete state and a continuum of states, where
destructive and constructive interferences occur depending on
the wavelength.17 In metal NP assemblies, Fano-like resonances
are due to interferences between strongly coupled narrow and
broad resonances and appear in structures like particle
oligomers,18 disk/ring assemblies,19 or dolmen-like structures.20

In this paper, we propose to extend the concept of extinction
cross-section to complex valued extinction to analyze the
coupling between plasmon modes in metallic dimers and
quadrumers. This complex quantity gives access to the phase
information resulting from the interaction of the scattered field
with the incident one and can be calculated for a subset of each
considered plasmonic system. The contribution of each particle
of a dimer to a plasmon mode is therefore rigorously calculated
in a complex form and the nature of interferences resulting
from the interaction between all contributions is predicted
according to the sign of their real part. A phenomenological
approach is also developed on the basis of coupled-mode
equations to deduce mutual coupling coefficients from the
resonance parameters rigorously calculated. This approach is
applied to two interacting silver spheres to identify and
characterize the coupling-induced hybrid modes. A more
complex system consisting in a quadrumer exhibiting Fano-
like resonances is further studied. In this case, the coupling
occurring between the four particles is also well interpreted
with the phenomenological approach.

■ CALCULATION OF THE COMPLEX VALUED
EXTINCTION

A practical way to characterize the optical response of a particle
system is to introduce the optical cross sections.21 In particular,
the extinction cross-section Cext expresses the total power losses
in the system due to absorption and scattering processes. In the
case of a single particle, this quantity is expressed using the so-
called optical theorem
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where Esca
∞ (ek) is the far-field scattered in the forward direction

ek of the incident field. The latter is assumed here to be a
monochromatic incident plane wave Einc = E0 exp(jks·r) of
pulsation ω traveling in the surrounding medium of refractive
index ns with wave vector ks. For a many-particle system, the
total extinction cross-section can be defined as the sum of the
individual particle extinction cross sections.
Here, we propose to generalize the concept of extinction

cross-section, by introducing the complex valued extinction C̃ext
i

for each particle and C̃ext for the system on the basis of the
classical extinction cross-section defined in eq 1
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where Esca
i,∞ (ek) is the far-field scattered by the ith particle of the

system. The optical theorem expressed in eq 1 defines the

extinction cross-section as an attenuation of the incident
radiation due to its interference with the scattered field in the
forward direction. In contrast to the classical quantity, the
complex valued extinction defined in eq 2 also gives access to
the phase information resulting from the interaction of the
scattered field with the incident one. Even if the individual
contributions C̃ext

i to the total extinction do not represent any
measurable quantity, they allow characterizing the contribution
of each particle to the optical response of the global system. In
order to interpret the resonance curves, we show the phase as
well as the real and imaginary parts of the individual complex
valued extinctions, noting that the imaginary part corresponds
to the classical extinction cross-section. The phase of the
complex valued extinction is the same as the dipolar moment
oscillation. We remind that, in the case of a dipolar resonance,
the phase of the dipolar moment matches the phase of the
incident field at energies lower than the resonance and is out-
of-phase at higher energies.
The partial complex extinctions provide information about

the relative oscillations of resultant dipolar moments of the
particles. When particles are illuminated with a constant phase
of the incident plane wave (Figure 1), the phase difference

between their scattered far-field (and, hence, between their
partial complex extinction, according to eq 2) results from a
phase difference in their dipolar moments. Complex extinction
can then be conveniently used to characterize the radiative
behavior of each particle of a coupled system.

■ PHENOMENOLOGICAL DESCRIPTION OF
PLASMON RESONANCES

We derive in this section a set of phenomenological equations
driving the amplitude of coupled plasmon modes, with a few

Figure 1. Schematic representation of phase relations between partial
scattered fields and oscillating dipolar moments of a system of
particles.
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parameters characterizing the coupling behavior in simple
plasmonic systems. The proposed formalism is consistent with
the classical coupled mode theory.22

As demonstrated in our previous work,23 a single plasmon
mode can be described through a first order differential
equation driving the mode amplitude a(t) excited by an
incident radiation (like an incident electric field) f 0(t)

ω
τ

κ= − − +a t
t

j a t a t f t
d ( )

d
Re{ } ( )

1
( ) ( )p 0 (3)

where τ is the time decay of the plasmon (representing the total
losses in the system), κ is the coupling coefficient, and ωp is the
complex resonant pulsation of the plasmon mode. The real part
of ωp corresponds to the resonance position and the imaginary
part to its half width at half-maximum. Considering both the
incident radiation and the plasmon amplitude oscillating with
the pulsation ω, such quantities can be expressed in terms of
their modulation amplitudes f0̃(t) and a ̃(t), respectively
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By including these expressions in eq 3 and by fixing the
condition f0̃(t) = 1, which corresponds to the case of a plane
wave excitation with unit amplitude, we obtain the following
particular solution of eq 3 in the steady state

ω
κ

ω ω τ
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− + ( )
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j

j
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The modulation amplitude a ̃ then only depends on the
pulsation ω, and the obtained expression can be written as a
simple singular function

ω
ω ω
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−

a
a

( ) p
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where the coupling coefficient is related to the amplitude by ap
= jκ, and the time decay to the imaginary part of the complex
pulsation by Im{ωp} = −1/τ. Regarding eqs 3 and 5, the
complex valued coupling coefficient quantifies the coupling
between the incident excitation and the plasmon mode. Its
amplitude provides the coupling strength, and its phase
corresponds to the oscillator phase at resonance relative to
the excitation.
This formulation can be applied to plasmon modes in single

or noninteracting particles. In the case of close particles,
plasmon resonances strongly interact, resulting in the formation
of hybrid modes in the particle system. In order to generalize
the phenomenological description to coupled systems, we
consider the simplest case of two interacting plasmon modes.
In such a case, we can write the coupled mode equations on the
basis of the single mode equation. Considering two coupled
modes a1(t) and a2(t) with original complex pulsations ω1 and
ω2, coupled to the incident radiation with coupling coefficients
κ1 and κ2, the phenomenological equations driving these modes
can be given by
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with κ12 and κ21 the mutual coupling coefficients between the
two modes. As in the case of a single mode, the plasmon
amplitudes can be expressed in the following form:
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Injecting relation 8 into 7, the particular solutions of the
coupled mode equations in steady state, and when f0̃(t) = 1, can
be written as
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These solutions appear as a sum of two singular functions,
showing that the coupling between the plasmon modes results
in two hybrid modes with complex resonance pulsations ω+ and
ω− distinct from the original mode pulsations. The values of the
resonance parameters a1

−, a1
+, a2

−, a2
+, ω+, and ω− of these hybrid

modes can be calculated after fitting the optical response of the
system with a meromorphic function of the pulsation with two
singular points.24 All phenomenological parameters introduced
in eqs 7 can then be expressed as a function of the resonance
parameters of hybrid modes. The coupling coefficients are
given by

κ
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Since these coefficients have to be constant for the given modes
a1(t) and a2(t), the sum of hybrid mode amplitudes a1

+ + a1
− and

a2
+ + a2

− remains constant, whatever the coupling state between
the plasmon modes. The mutual coupling coefficients are given
in turn by

κ ω
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with Δω± = ω+ − ω−. Considering that these coupling
coefficients reflect the coupling strength in the system and
regarding their expressions, the difference between the complex
pulsation of hybrid modes, Δω±, as well as the product of their
amplitude, give a direct measure of the coupling effects in
particle aggregates. As for the coupling coefficients, the mutual
coupling coefficients are complex valued parameters whose
amplitude provides a direct estimate of the coupling strength
between the particles, and phase corresponds to the phase
detuning with which a mode acts on the other.
Finally, the original and hybrid mode pulsations are related as
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These relations show that, for given original modes, the shift of
hybrid modes directly depends on the mutual coupling
coefficients, as expected in strongly coupled oscillators.25

Consider now the limit of uncoupled modes, for example, by
sufficiently distancing two particles so that they no longer
interact with each other. The mutual coupling coefficients
should nullify and the equations in 7 become independent. In
this case, the nullification of the two hybrid mode amplitudes
a1
− and a2

+ ensure that the mutual coupling coefficients nullify
and that the hybrid mode pulsations tend to the original ones
(ω+ → ω1 and ω− → ω2).
The formalism presented here concerns the coupling

between two modes only, whereas realistic cases often present
more complex coupling behavior. However, this simple model
helps to predict and to analyze hybrid modes in dimers as well
as Fano resonances appearing in strongly coupled systems, as
shown hereafter. It will be applied to fit the complex extinction
spectra in silver nanoparticle based structures. The details
related to the method used to compute the rigorous extinction
as well as the silver permittivity model can be found in
Methods.

■ HYBRID MODES IN DIMERS

We start the analysis of plasmon modes in dimers by first
considering two spheres of 20 nm (S1) and 10 nm (S2) in
radius, with a gap of 5 nm between their surfaces and
illuminated by a plane wave polarized parallel to the dimer axis.
These particles are small enough to mainly exhibit a dipolar

resonance when taken separately. We compute separately, from
the rigorous resolution of the multiple scattering problem, the
partial complex extinctions C̃ext

1 and C̃ext
2 of S1 and S2. Each of

these complex quantities exhibits two resonances expected to
correspond to hybrid modes resulting from the coupling
between the dipolar modes of particles. Fitting their spectral
variations with a meromorphic function (being the sum of two
singular functions), as described in eq 9, gives the values of the
hybrid pulsations ω+ and ω− and amplitude parameters a1

−, a1
+,

a2
−, and a2

+ (Figure 2a). The reconstruction of each singular
function of eq 9 from the extracted parameters is shown in
Figure 2c,d. These curves correspond to the contribution of
each particle to each hybrid mode. The sum of all these
functions, which corresponds to the total complex valued
extinction of the system, is compared to the spectral variations
calculated rigorously in Figure 2b. The good agreement
between the curves proves that the phenomenological approach
is accurate for this system.
Looking at the separated contributions of S1 and S2 to each

hybrid mode in Figure 2c,d also inform on the nature of these
modes. When the phase of the singular functions corresponding
to S1 and S2 are the same, their mode can be interpreted as
resulting from dipoles oscillating in phase (Figure 2c). We can
note here that the same sign of the real and imaginary part of
the singular functions can also be interpreted as in-phase
dipolar oscillations. This results in a large dipolar moment and
a highly radiative system whose mode is qualified of super-
radiant. When the real or the imaginary parts have opposite
signs (Figure 2d), the dipolar moments of both particles
oscillate out-of-phase leading to a small resulting dipolar
moment of the dimer and to a poorly radiative system. The
mode is then said to be subradiant. The resonance bandwidth
of a given mode is related to the total losses in the system. In
the case of a subradiant mode, the reduced resulting dipolar
moment results in lower radiative losses, leading to a sharper

Figure 2. (a) Resonance characteristics of hybrid modes for a dimer composed of 20 and 10 nm in radius spheres, with a gap of 5 nm. (b)
Comparison of the total complex extinction cross sections calculated from a rigorous approach and from singular functions of c and d. (c, d)
Contribution of each particle to the extinction of each hybrid mode (these two graphs have the same ordinate amplitude).
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resonance bandwidth. For a super-radiant mode, the opposite
effect is observed, and the highly radiative behavior results in
high radiative losses and hence to a broader resonance
bandwidth. These behaviors appear in the two hybrid modes
of the dimer.
Similar results are obtained when considering an incident

polarization perpendicular to the dimer axis, where both
subradiant and super-radiant modes are identified from the
fitted resonance characteristics (see Figure S1 in Supporting
Information).
An interesting effect of hybrid modes relies on the near-field

around the particles. Then, in the case of the super-radiant
mode, all particles radiate in-phase, leading to constructive
interferences on the total field between the particles. As an
example, this effect is at the origin of “hot spots” in the gap of a
dimer when illuminating it with a parallel polarization. For
subradiant modes, the out-of-phase radiation of the particles
leads to destructive interferences and then to a minimal
intensity of the local field.
An important feature in coupled systems is the dependence

of the coupling strength with the distance separating the
particles. Following the phenomenological analysis in the
previous section, the mutual coupling coefficients can serve to
quantify the interaction between nanoparticles. Figure 3 depicts

the modulus of both coupling and mutual coupling coefficients
as a function of the gap between the particles, for an incident
polarization parallel or perpendicular to the dimer axis.
Coupling coefficients κ1 and κ2 are intrinsic characteristics of
each sphere and then are expected to be independent of the
dimer configuration. However, the plotted values show a slight
decrease of these coefficients with increasing the gap. This can
be interpreted as a consequence of coupling between dipolar
modes and higher order modes. Indeed, the phenomenological

analysis of the system only consider the ideal case of coupling
between two (here dipolar) modes. Actually, coupling between
dipolar and quadrupolar modes also occurs, inducing disparities
between expected and computed phenomenological values.
The computed mutual coupling coefficients κ12 and κ21 show

for each incident polarization a fast decreasing coupling
strength when increasing the gap between particles. By
comparing the amplitudes for each polarization, the coupling
strength in the case of a parallel polarization appears to be
larger (by a factor of about 3) than in the perpendicular case.
When considering each sphere as oscillating dipoles, this result
indicates a better coupling in the case of parallel dipolar
moments. Regarding again the coupling coefficients, their
values are more perturbed for a parallel incident polarization. In
this case and for close particles, relatively strong coupling
effects can be expected between dipolar and higher order
modes, compared with a perpendicular polarization, where the
coupling coefficients are more stable.
We can note here the different orders of magnitude between

the coupling and mutual coupling coefficients. This difference
comes from the different physical inputs to which they apply:
κ1 f 0(t), κ2 f 0(t), κ12a2(t), and κ21a1(t). These terms have the
same dimension, and their comparison could inform about the
relative importance of the coupling and mutual coupling effects
in the resonant behavior of the system.
The hybrid modes resulting from the coupling between

particles resonate at complex pulsations ω+ and ω− different
from the pulsation of initial modes ω1 and ω2. Their
determination gives an energetic diagram of the system, as
shown in Figure 4a. The latter highlights different behaviors of
hybrid modes. The two modes resonating at higher wave-
lengths (and lower energy) are red-shifted when increasing the
interparticle coupling. They correspond to an energetically
favorable configuration of the dipolar moments of the particles,
that is, when the dipoles are attractive. These modes can be
seen as bounding states of the system (Figure 4c). The modes
resonating at lower wavelengths correspond to a repulsive
configuration of dipoles and can be seen in turn as antibonding
states of the system. Another interesting feature is that the
resonance position of bonding states tends to the dipolar mode
position of the larger particle, whereas the resonance position
of antibonding states tends to the dipolar mode position of the
smaller particle.
Consider now the special case of homodimers, composed of

identical particles. In such a case, the initial modes have
identical coupling coefficients κ0 with the incident excitation
and resonate at the same pulsation ωp. Anticipating the mutual
coupling coefficients to be equal (κ12 = κ21 = κ), as well as the
mode amplitudes (a1(t) = a2(t) = a(t)), the coupled mode eq 7
can be simplified in a single equation:

ω ω κ κ= − + + +a t
t

j a t a t a t f t
d ( )

d
Re{ } ( ) Im{ } ( ) ( ) ( )p p 0 0

(13)

Included in eq 13 is the expression of the mode amplitude
given by eq 4, which yields in steady-state the condition f0̃(t) =
1

ω
κ

ω ω κ ω ω
̃ =

− −
=

−

+

+a
j

j
a

( ) 0

p (14)

As a consequence, the coupling between two identical
particles leads to a single hybrid mode with a complex pulsation

Figure 3. Coupling (on the left y-axis) and mutual coupling (on the
right y-axis) coefficients vs the gap between particles for an incident
polarization (a) parallel or (b) perpendicular to the dimer axis.
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ω+ = ωp + jκ and a resonance amplitude a+ = jκ0. This hybrid
mode has the same amplitude as the initial mode, and the
resonance pulsation is only shifted from the initial position ωp

by the mutual coupling term jκ. Obviously, the resonant
response of both particles is exactly the same, and the hybrid
mode corresponds systematically to a super-radiant mode (in-
phase oscillations). Out-of-phase oscillations of dipolar mo-
ments appear as forbidden (i.e., dark) modes.
The energetic diagram of a homodimer composed of 20 nm

in radius spheres is plotted in Figure 4b. In addition to the
identified hybrid modes, different modes resulting from a
coupling between dipolar and quadrupolar initial modes are
also represented. For a complete description of these
interactions with higher modes, the phenomenological
description used has to be generalized to the case of M
cross-coupled modes.

■ FANO RESONANCES IN QUADRUMERS

We deal now with another system where strong coupling
between plasmon modes occurs. This system is schematically
described in Figure 5, and consists in a quadrumer composed of
identical spherical particles 30 nm in radius. This system can be
viewed as a pair of vertical (D1) and horizontal (D2)
homodimers. When illuminating this system with an incident
plane wave polarized along the D2 axis, the original particle
modes are strongly coupled. The extinction spectra calculated
from the rigorous resolution of the multiple scattering problem
are plotted in Figure 5 versus the gap of D2. They exhibit Fano
resonances, that is, asymmetric resonant line profiles, in the
extinction cross-section spectra, noting also the presence of a
quadrupolar resonance at about 360 nm.
In order to analyze the coupling effects in the quadrumer, we

consider eqs 7 extended to four coupled equations to describe
the mutual coupling between the four particles. Due to the
symmetry of this system and considering the given incident
polarization, these equations can be reduced into two coupled
equations describing the resonance behavior of the quadrumer

ω ω κ

κ κ

ω ω κ

κ κ

= − + +

+ +

= − + +

+ +

⎧

⎨

⎪⎪⎪
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j a t a t f t

a t a t
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d
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11 1 12 2

2
0 2 0 2 0 0

22 2 12 1 (15)

where a1(t) and a2(t) are the resonance amplitudes in the
dimers D1 and D2, respectively. ω0 is the original complex
pulsation of the particles’ dipolar resonance and κ0 is their
coupling coefficient with the incident radiation. κ11 and κ22 are
the mutual coupling coefficients between the particles in the
dimers D1 and D2, respectively, κ12 is the mutual coupling
coefficient between the D1 and D2 particles. The coupled eqs

Figure 4. Resonance position of hybrid modes versus the gap between particles for a dimer composed of (a) 10 and 20 nm in radius spheres and (b)
identical spheres 20 nm in radius. (c) Schematic representation of the energetic repartition of hybrid modes.

Figure 5. Extinction cross-section of the system sketched on the right
composed of two interacting dimers, versus the gap of the horizontal
dimer. The dashed line indicates the position of the Fano dips in the
extinction spectra.
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15 describing the system anticipate the formation of two
different hybrid modes from the coupling of the initial dipolar
resonances of the particles.
In order to determine the coupling characteristics of such a

quadrumer, we compute the partial complex extinction cross
sections of each dimer C̃ext

D1 and C̃ext
D2. The resonance parameters

of the hybrid modes (for a gap of 60 nm in D2) are gathered in
Figure 6a, and the reconstructed singular functions correspond-
ing to the contribution of each dimer to both hybrid modes are
shown in Figure 6c,d. The sum of all these contributions,
deduced from the phenomenological approach, is in good
agreement with the total complex valued extinction cross-
section calculated rigorously (Figure 6b), except for the
quadrupolar mode (at about 355 nm) not taken into account
in our model. This proves the validity of the coupled-mode
approach for this kind of system too.
As previously stated, the nature of hybrid modes can be

identified through the phase shifts between the dipolar
oscillations deduced from singular functions plotted in Figure
6c,d. For the hybrid mode resonating at angular frequency ω+,
the dipolar modes associated with D1 and D2 oscillate nearly in
phase (Figure 6c). This hybrid mode corresponds therefore to a
high resultant dipolar moment making this mode highly
radiative and qualified of super-radiant. The hybrid mode
resonating at ω− is characterized by an out-of-phase oscillation
of the dipolar moments, making this mode poorly radiative that
can be qualified of subradiant. A particular feature of this
system comes from highly asymmetric line profiles in the
contribution of both dimers to the subradiant mode. The
superposition of these asymmetric line profiles with the
contribution of the super-radiant mode explains the Fano
line-shape in the total extinction of the quadrumer.

Figure 7a shows the plot of relative dipolar moment phases
for the two hybrid modes in function of the gap in D2,
revealing two different coupling regimes. When increasing the
gap between the particles in D2 (corresponding to weak
coupling), the super-radiant mode tends to a zero phase shift
between all the dipolar moments resulting in a large bandwidth
(Figure 7c), and the subradiant mode tends to a π phase shift
with a reduced bandwidth. This regime results in a sharp Fano
resonance in the extinction spectra (Figure 5). In the strong
coupling regime, that is, when reducing the gap in D2, a
reduction in the phase shifts of the super-radiant mode is
observed, while its bandwidth is reduced. Contrarily, the phase
difference between the dipolar moments of the subradiant
mode tends to be reduced and its bandwidth increases. Then
under this regime the super-radiant and subradiant modes
become, respectively, less and more radiative. Moreover, the
plot of the spectral position of these hybrid modes (Figure 7b)
shows that the difference between their spectral positions
decreases with the gap in D2. The combination of these two
modes forms a broader Fano resonance in the structure total
extinction spectrum.
An actual interest of Fano resonances in plasmonic structures

lies in their extreme sensitivity to the local environment,
making such resonances well suited for sensing applications.
The sensing capabilities of plasmon resonances can be
evaluated through their Figure of Merit26 (FoM), defined as
the ratio of the plasmon energy shift per refractive index unit
change in the surrounding medium, divided by the width of the
resonance band. Since the FoM of a given mode mainly
depends on its spectral width, the Fano resonance of the
quadrumer in the weak coupling regime appears as the best
configuration for sensing because of its sharp width compared
to the Fano resonance in the strong coupling regime. The plot

Figure 6. (a) Resonance characteristics fitted from the partial complex valued extinction cross-section of each dimer. The gap of D2 is fixed to 60
nm. (b) Total complex extinction cross-section from rigorous calculation and the phenomenological modeling. (c, d) Singular functions giving the
contribution of each dimer to each hybrid mode (these two graphs have the same ordinate amplitude).
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of the quadrumer extinction spectra in the weak coupling
regime (Figure 8a) shows the redshift of the asymmetric Fano
line profile when increasing the local refractive index. The plot
of the two hybrid modes resonance positions in Figure 8b
exhibits a nearly identical energy shift when increasing the
surrounding medium refractive index, while the spectral width
of the super-radiant mode increases much more significantly
than the subradiant one (Figure 8c). The latter then retains its
low radiative behavior. Using a linear regression of the energy
shift versus the local refractive index and the subradiant mode
fwhm in vacuum, the FoM of the Fano resonance in the weak
coupling regime is estimated to 19.4, which is much larger than
in previously studied finite structures.18,27 By comparison, the
FoM in the strong coupling regime is estimated to 6.7,
demonstrating the advantage of a weak coupling configuration
for sensing applications.
The Fano resonances in a quadrumer are observed when the

particles are sufficiently large to ensure a sufficiently strong

coupling between them. In the case of a quadrumer composed
of smaller particles (studied in Supporting Information), the
hybrid modes of the system also consist in a super-radiant and a
subradiant modes, but without any marked asymmetric line
profile.

■ CONCLUSION
In this paper, we introduced the concept of complex valued
extinction in a system of plasmonic particles. It provides a
convenient way to characterize the resonant behavior of each
particle of the system, and permits to determine the phase
relations between the radiated fields. When considering the
dipolar resonances of the particles, the partial complex valued
extinctions can then be used to deduce the phase relations
between the resultant dipolar moment oscillations.
We derived a set of coupled mode equations to describe the

coupling behavior between two plasmon modes. A few
phenomenological parameters have been introduced, among
which the mutual coupling coefficients that allow a quantitative
estimation of coupling strength in the coupled system. The
proposed description, consistent with the coupled oscillator
theory, predicts the hybridization of plasmon modes. The
coupling between two modes forms two hybrid modes at
different resonant positions depending on the coupling
strengths. A fit of complex extinction spectra allows an accurate
determination of all phenomenological parameters.
This approach was first applied to hybrid modes in dimers.

The initial dipole modes of spheres couple to form hybrid
modes differentiated by the direction of the dipole moment and
the resulting phase relationship between the oscillations of the
dipole moment of each particle. Thus, this system brings up
bounding modes (where the dipolar moments are in an
energetically favorable configuration, i.e., attractive), for which
the spectral position is red-shifted when the interparticle
coupling increases. Antibounding modes (with an energetically
unfavorable, i.e., repulsive, configuration of dipolar moments)
are also formed, with a spectral position shifted toward shorter
wavelengths when the coupling increases. The modulus of
mutual coupling coefficients shows a fast decreasing depend-
ence with the gap between particles.
Finally, a more complex system consisting of four identical

particles in interaction was investigated. The extinction of this
system presents asymmetric profiles of Fano resonances. This
kind of spectra is also well described using the coupled mode
model. We characterized and identified the two hybrid modes
resulting from the coupling between the initial dipolar modes of
the particles. In the weak coupling regime of the system,
corresponding to a large separation between two of the
particles in the quadrumer, the Fano line profile emerges from
the superposition of a broad super-radiant and a sharp
subradiant modes. In the strong coupling regime, with a
small distance between the particles, the subradiant mode as
well as the resulting Fano resonance is broadened. The
subradiant mode sharpness in the weak coupling regime results
in a very high FoM, and this configuration appears to be the
best suited for sensing applications.
In this work, we limited our analysis to the hybrid mode in

systems composed of silver spheres. However, the developed
approach can be extended to various particle geometries by
using a numerical method (like the Discrete Dipole
Approximation28) allowing the computation of the separated
contribution of each particle in the system. The phenomeno-
logical model could also be extended to consider the coupling

Figure 7. (a) Relative phase between dipolar moment oscillations, (b)
resonance position, and (c) half-bandwidth of the hybrid mode in the
quadrumer vs the gap of the dimer D2.
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between dipolar and higher modes, or the coupling behavior in
larger systems. In this case, the number of coupled equation
(and then the number of phenomenological parameters)
should be extended in consequence.

■ METHODS

The rigorous calculation of the complex valued extinction relies
on the resolution of the multiple scattering problem. The latter
can be addressed as follows: let us consider an electromagnetic
wave incident on a system of nonoverlapping particles with a
given geometry, we search the wave scattered by this system
which satisfies the Maxwell’s equations by applying the
boundary conditions on each interface. The superposition
approach we use to solve this problem can be viewed as a
generalization of the T-Matrix method,29 and its expansion of
electromagnetic fields in the basis of spherical functions, to
multiple particle systems. Details relevant to the used method
can be found in several papers dealing with the exact solution of
multiple scattering in the case of spherical scatterers.30−32

For computations, we consider silver spheres with a refractive
index obtained from the modified Drude model permittivity1

ε ω ε
ω ε

ω ω
= = −

+ Γ
n

j
( )i i ib

2 p
2

0
2

(16)

with Γ = Γ0 + vF/Ri, the modified damping constant that takes
account of the particle dimensions. Γ0 is the damping constant
of bulk silver (Γ0 = 17.6 meV), vF is the Fermi velocity of
electrons (vF = 1.39 × 106 m/s) and Ri is the radius of the given
sphere. εib is the contribution of interband transitions (εib =
3.7ε0, supposed to be constant in the visible spectrum), and ωp

is the plasma pulsation of silver (ℏωp = 8.89 eV).
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Additional information, including the identification of dimer
hybrid modes obtained when considering an incident polar-
ization perpendicular to the dimer axis and the study of hybrid
modes supported by a quadrumer composed of smaller silver
spheres. This material is available free of charge via the Internet
at http://pubs.acs.org.
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